69 research outputs found

    F-106B airplane active control landing gear drop test performance

    Get PDF
    Aircraft dynamic loads and vibrations resulting from landing impact and from runway and taxiway unevenness are recognized as significant factors in causing fatigue damage, dynamic stress on the airframe, crew and passenger discomfort, and reduction of the pilot's ability to control the aircraft during ground operations. One potential method for improving operational characteristics of aircraft on the ground is the application of active control technology to the landing gears to reduce ground loads applied to the airframe. An experimental investigation was conducted on series-hydraulic active control nose gear. The experiments involved testing the gear in both passive and active control modes. Results of this investigation show that a series-hydraulic active control gear is feasible and that such a gear is effective in reducing the loads transmitted by the gear to the airframe during ground operations

    The Gamma Intensity Monitor at the Crystal-Barrel-Experiment

    Get PDF
    Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Physics, 2008.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (p. 69).This thesis details the motivation, design, construction, and testing of the Gamma Intensity Monitor (GIM) for the Crystal-Barrel-Experiment at the Universität Bonn. The CB-ELSA collaboration studies the baryon excitation spectrum; resonances are produced by exciting nucleons in a polarized target with a linearly or circularly polarized, GeV-order photon beam. The photoproduced decay states are measured by a variety of detectors covering almost 4[pi] of the solid angle about the target. To measure the total cross section of these reactions, the total flux of photons through the target must be known to high accuracy. As the total cross section for nuclear photoproduction is low, counting the photons unscattered in the target is sufficiently accurate measurement of this quantity{this is the purpose of the Gamma Intensity Monitor. It is the final detector along the beam path and counts all photons that do not react with the target. The major design parameter is that the detector must consistently count GeV order photons at 10 MHz. This is accomplished by allowing the gammas to electronpositron pair produce within Ĉerenkov radiating PbF2 crystals. The Cerenkov light from these highly relativistic lepton pairs is measured with industrial photomultiplier tubes to provide an effective efficiency close to unity. Special bases were built for photomultiplier to ensure stable signal amplication even high count rates. Detailed descriptions of the GIM are provided to ensure that its inner working are completely transparent and to enable efficient operation and maintenance of the detector.by William R. McGehee.S.B

    Transport and disorder-induced localization of ultracold Fermi gases

    Get PDF
    We experimentally study localization and dynamics of ultracold fermions in speckle and optical lattice potentials to explore Anderson localization, many-body localization, and relaxation dynamics in strongly correlated systems. Anderson localization is probed by releasing non-interacting, spin-polarized gases into three dimensional, anisotropic disordered potentials produced from optical speckle. A fraction of the atoms are localized by the disorder, and a mobility edge is found separating localized from extended states. The length scale of the speckle is varied, and the localized state is found to scale linearly with the geometric mean of the speckle autocorrelation length. We realize the Fermi Hubbard model by loading atoms in a cubic optical lattice. Non-equilibrium momentum distributions are created via Raman transitions, and the excitation relaxation rate is measured in the lattice. Transport experiments were performed in a disordered optical lattice to explore the disordered Hubbard model. These experiments reveal localization in the presence of strong interactions and an interaction driven metal-to-insulator transition. The localized state is found to be insensitive to a doubling in the temperature of the gas and is consistent with predictions of many-body localization

    A chip-scale atomic beam clock

    Full text link
    Atomic beams are a longstanding technology for atom-based sensors and clocks with widespread use in commercial frequency standards. Here, we report the demonstration a chip-scale microwave atomic beam clock using coherent population trapping (CPT) interrogation in a passively pumped atomic beam device. The beam device consists of a hermetically sealed vacuum cell fabricated from an anodically bonded stack of glass and Si wafers. Atomic beams are created using a lithographically defined microcapillary array connected to a Rb reservoir1 and propagate in a 15 mm long drift cavity. We present a detailed characterization of the atomic beam performance (total Rb flux 7.7×1011s1\approx 7.7 \times 10^{11} s^{-1} at 363 K device temperature) and of the vacuum environment in the device (pressure < 1 Pa), which is sustained using getter materials which pump residual gases and Rb vapor. A chip-scale beam clock is realized using Ramsey CPT spectroscopy of the 87Rb ground state hyperfine transition over a 10 mm Ramsey distance in the atomic beam device. The prototype atomic beam clock demonstrates a fractional frequency stability of 1.2×109/τ\approx 1.2 \times 10^{-9}/\sqrt{\tau} for integration times τ\tau from 1 s to 250 s, limited by detection noise. Optimized atomic beam clocks based on this approach may exceed the long-term stability of existing chip-scale clocks, and leading long-term systematics are predicted to limit the ultimate fractional frequency stability below 101210^{-12}.Comment: 22 pages, 4 figure

    Sloan Digital Sky Survey Imaging of Low Galactic Latitude Fields: Technical Summary and Data Release

    Full text link
    The Sloan Digital Sky Survey (SDSS) mosaic camera and telescope have obtained five-band optical-wavelength imaging near the Galactic plane outside of the nominal survey boundaries. These additional data were obtained during commissioning and subsequent testing of the SDSS observing system, and they provide unique wide-area imaging data in regions of high obscuration and star formation, including numerous young stellar objects, Herbig-Haro objects and young star clusters. Because these data are outside the Survey regions in the Galactic caps, they are not part of the standard SDSS data releases. This paper presents imaging data for 832 square degrees of sky (including repeats), in the star-forming regions of Orion, Taurus, and Cygnus. About 470 square degrees are now released to the public, with the remainder to follow at the time of SDSS Data Release 4. The public data in Orion include the star-forming region NGC 2068/NGC 2071/HH24 and a large part of Barnard's loop.Comment: 31 pages, 9 figures (3 missing to save space), accepted by AJ, in press, see http://photo.astro.princeton.edu/oriondatarelease for data and paper with all figure

    Interpretation of inverted photocurrent transients in organic lead halide perovskite solar cells: proof of the field screening by mobile ions and determination of the space charge layer widths

    Get PDF
    In Methyl Ammonium Lead Iodide (MAPI) perovskite solar cells, screening of the built-in field by mobile ions has been proposed as part of the cause of the large hysteresis observed in the current/voltage scans in many cells. We show that photocurrent transients measured immediately (e.g. 100 μs) after a voltage step can provide direct evidence that this field screening exists. Just after a step to forward bias, the photocurrent transients are reversed in sign (i.e. inverted), and the magnitude of the inverted transients can be used to find an upper bound on the width of the space charge layers adjacent to the electrodes. This in turn provides a lower bound on the mobile charge concentration, which we find to be ≳1 × 1017 cm−3. Using a new photocurrent transient experiment, we show that the space charge layer thickness remains approximately constant as a function of bias, as expected for mobile ions in a solid electrolyte. We also discuss additional characteristics of the inverted photocurrent transients that imply either an unusually stable deep trapping, or a photo effect on the mobile ion conductivity

    The Seventh Data Release of the Sloan Digital Sky Survey

    Get PDF
    This paper describes the Seventh Data Release of the Sloan Digital Sky Survey (SDSS), marking the completion of the original goals of the SDSS and the end of the phase known as SDSS-II. It includes 11663 deg^2 of imaging data, with most of the roughly 2000 deg^2 increment over the previous data release lying in regions of low Galactic latitude. The catalog contains five-band photometry for 357 million distinct objects. The survey also includes repeat photometry over 250 deg^2 along the Celestial Equator in the Southern Galactic Cap. A coaddition of these data goes roughly two magnitudes fainter than the main survey. The spectroscopy is now complete over a contiguous area of 7500 deg^2 in the Northern Galactic Cap, closing the gap that was present in previous data releases. There are over 1.6 million spectra in total, including 930,000 galaxies, 120,000 quasars, and 460,000 stars. The data release includes improved stellar photometry at low Galactic latitude. The astrometry has all been recalibrated with the second version of the USNO CCD Astrograph Catalog (UCAC-2), reducing the rms statistical errors at the bright end to 45 milli-arcseconds per coordinate. A systematic error in bright galaxy photometr is less severe than previously reported for the majority of galaxies. Finally, we describe a series of improvements to the spectroscopic reductions, including better flat-fielding and improved wavelength calibration at the blue end, better processing of objects with extremely strong narrow emission lines, and an improved determination of stellar metallicities. (Abridged)Comment: 20 pages, 10 embedded figures. Accepted to ApJS after minor correction

    The Fifth Data Release of the Sloan Digital Sky Survey

    Get PDF
    This paper describes the Fifth Data Release (DR5) of the Sloan Digital Sky Survey (SDSS). DR5 includes all survey quality data taken through June 2005 and represents the completion of the SDSS-I project (whose successor, SDSS-II will continue through mid-2008). It includes five-band photometric data for 217 million objects selected over 8000 square degrees, and 1,048,960 spectra of galaxies, quasars, and stars selected from 5713 square degrees of that imaging data. These numbers represent a roughly 20% increment over those of the Fourth Data Release; all the data from previous data releases are included in the present release. In addition to "standard" SDSS observations, DR5 includes repeat scans of the southern equatorial stripe, imaging scans across M31 and the core of the Perseus cluster of galaxies, and the first spectroscopic data from SEGUE, a survey to explore the kinematics and chemical evolution of the Galaxy. The catalog database incorporates several new features, including photometric redshifts of galaxies, tables of matched objects in overlap regions of the imaging survey, and tools that allow precise computations of survey geometry for statistical investigations.Comment: ApJ Supp, in press, October 2007. This paper describes DR5. The SDSS Sixth Data Release (DR6) is now public, available from http://www.sdss.or

    LSST Science Book, Version 2.0

    Get PDF
    A survey that can cover the sky in optical bands over wide fields to faint magnitudes with a fast cadence will enable many of the exciting science opportunities of the next decade. The Large Synoptic Survey Telescope (LSST) will have an effective aperture of 6.7 meters and an imaging camera with field of view of 9.6 deg^2, and will be devoted to a ten-year imaging survey over 20,000 deg^2 south of +15 deg. Each pointing will be imaged 2000 times with fifteen second exposures in six broad bands from 0.35 to 1.1 microns, to a total point-source depth of r~27.5. The LSST Science Book describes the basic parameters of the LSST hardware, software, and observing plans. The book discusses educational and outreach opportunities, then goes on to describe a broad range of science that LSST will revolutionize: mapping the inner and outer Solar System, stellar populations in the Milky Way and nearby galaxies, the structure of the Milky Way disk and halo and other objects in the Local Volume, transient and variable objects both at low and high redshift, and the properties of normal and active galaxies at low and high redshift. It then turns to far-field cosmological topics, exploring properties of supernovae to z~1, strong and weak lensing, the large-scale distribution of galaxies and baryon oscillations, and how these different probes may be combined to constrain cosmological models and the physics of dark energy.Comment: 596 pages. Also available at full resolution at http://www.lsst.org/lsst/sciboo

    Optimization of the Observing Cadence for the Rubin Observatory Legacy Survey of Space and Time: A Pioneering Process of Community-focused Experimental Design

    Get PDF
    © 2021. The Author(s). Published by the American Astronomical Society. This work may be used under the terms of the Creative Commons Attribution 4.0 licence. https://creativecommons.org/licenses/by/4.0/Vera C. Rubin Observatory is a ground-based astronomical facility under construction, a joint project of the National Science Foundation and the U.S. Department of Energy, designed to conduct a multipurpose 10 yr optical survey of the Southern Hemisphere sky: the Legacy Survey of Space and Time. Significant flexibility in survey strategy remains within the constraints imposed by the core science goals of probing dark energy and dark matter, cataloging the solar system, exploring the transient optical sky, and mapping the Milky Way. The survey’s massive data throughput will be transformational for many other astrophysics domains and Rubin’s data access policy sets the stage for a huge community of potential users. To ensure that the survey science potential is maximized while serving as broad a community as possible, Rubin Observatory has involved the scientific community at large in the process of setting and refining the details of the observing strategy. The motivation, history, and decision-making process of this strategy optimization are detailed in this paper, giving context to the science-driven proposals and recommendations for the survey strategy included in this Focus Issue.Peer reviewedFinal Published versio
    corecore